THE PROPANE TECHNICAL POCKET GUIDE

The Propane Technical Pocket Guide

The Propane Technical Pocket Guide is intended to be a general reference of information on preparing for the installation of propane systems. It provides key data and answers important questions that are relevant to construction professionals planning to incorporate propane in their construction projects.

This guide is not intended to conflict with federal, state, or local ordinances or pertinent industry regulations, including National Fire Protection Association (NFPA) 54 and 58. These should be observed at all times.

The Propane Technical Pocket Guide must not be considered a replacement for proper training on the installation and start-up of propane systems. Propane system installations should always be performed by trained propane professionals. For more information go to propanesafety.com.

Table of Contents

2 PROFESSIONALLY ACCREDITED TRAINING
3 PROPERTIES OF GAS
6 VAPOR PRESSURE OF GAS
7 DETERMINING TOTAL LOAD
9 VAPORIZATION RATES
11 CONTAINER LOCATION AND INSTALLATION
14 PIPE AND TUBING SIZING
16 GAS PIPING INLET POSITIONING
17 CONVERSION FACTORS

Professionally Accredited Training

The Propane Education \& Research Council (PERC) provides free AIA-, NAHB-, USGBC-, and NARIapproved continuing education courses. Fulfill your CEU requirements today at buildwithpropane.com/training.

Energy Efficiency

- Go Green With Propane: An Overview of Propane Gas Systems for Green Residential Construction
- Propane-Enhanced Renewable Energy Systems
- Residential Energy Performance Upgrades: An Energy, Economic, and Environmental Analysis
- Understanding the 2009 IECC Energy Code, Advanced Efficiency Programs, and Their Implications for Propane
- Energy and Environmental Analysis of Propane Energy Pod Homes

Generators

- Specifying Propane Standby Generators: Installation and Value Considerations
- Living Off-Grid: Power Generation and Storage Basics

Heating

- A Comparative Analysis of Residential Heating Systems
- Hydronic Heating in Rural Residential Applications
- Propane Enhanced Solar Water Heating
- Retrofitting Homes from Heating Oil to Propane: Efficiency, Economic, and Environmental Benefits
- Heating Oil Conversion: Exploring Propane as a Viable Alternative Energy Source

Outdoor Living

- Expanding Outdoor Living: Using Propane for Efficient and Sustainable Outdoor Living
- Innovations With Propane Gas for Outdoor Residential Use

Propane Systems

- Community Propane Tanks: Economical, Environmentally Responsible Energy Without Geographic Limits
- Propane Gas Underground Systems: Residential Infrastructure Requirements and Energy Benefits

Water Heating

- A Comparative Analysis of Residential Water Heating Systems
- Water Heaters: Retrofitting from Standard Electric to Gas Tankless
- Condensing Tankless Water Heaters: Using Propane for the Most Efficient Water Heaters on the Market

Properties of Propane and Natural Gas
 (Methane)

Table 1A. Approximate Properties of Gases (English)		
	Propane	Natural Gas
	$\mathrm{C}_{3} \mathrm{H}_{8}$	CH_{4}
Initial Boiling Point	-44	-259
Specific Gravity of Liquid (Water at 1.0) at $60^{\circ} \mathrm{F}$	0.504	n/a
Weight per Gallon of Liquid at $60^{\circ} \mathrm{F}$, LB	4.2	n/a
Specific Heat of Liquid, $\mathrm{Btu} / \mathrm{LB}$ at $60^{\circ} \mathrm{F}$	0.63	n/a
Cubic Feet of Vapor per Gallon at $60^{\circ} \mathrm{F}$	36.38	n/a
Cubic Feet of Vapor per Pound at $60^{\circ} \mathrm{F}$	8.66	23.55
Specific Gravity of Vapor (Air $=1.0$) at $60^{\circ} \mathrm{F}$	1.5	0.6
Ignition Temperature in Air, ${ }^{\circ} \mathrm{F}$	920-1120	1301
Maximum Flame Temperature in Air, ${ }^{\circ} \mathrm{F}$	3595	2834
Cubic Feet of Air Required to Burn One Cubic Foot of Gas	23.68	9.57
Limits of Flammability in Air, \% of Vapor in Air-Gas Mix: (a) Lower (b) Upper	$\begin{gathered} 2.15 \\ 9.6 \end{gathered}$	$\begin{gathered} 5 \\ 15 \end{gathered}$
Latent Heat of Vaporization at Boiling Point: (a) Btu per Pound (b) Btu per Gallon	$\begin{aligned} & 184 \\ & 773 \end{aligned}$	$\begin{aligned} & 219 \\ & \mathrm{n} / \mathrm{a} \end{aligned}$
Total Heating Values After Vaporization: (a) Btu per Cubic Foot (b) Btu per Pound (c) Btu per Gallon	$\begin{gathered} 2,488 \\ 21,548 \\ 91,502 \end{gathered}$	$\begin{gathered} 1,012 \\ 28,875 \\ n / a \end{gathered}$

Properties of Gas (Continued)

Table 1B. Approximate Properties of Gases (Metric)		
PROPERTY	Propane	Natural Gas
	$\mathrm{C}_{3} \mathrm{H}_{8}$	CH_{4}
Initial Boiling Point, ${ }^{\circ} \mathrm{C}$	-42	-162
Specific Gravity of Liquid (Water at 1.0) at $15.56^{\circ} \mathrm{C}$	0.504	n/a
Weight per Cubic Meter of Liquid at $15.56^{\circ} \mathrm{C}$, kg	504	n/a
Specific Heat of Liquid, Kilojoule/Kilogram at $15.56^{\circ} \mathrm{C}$	1.464	n / a
Cubic Meter of Vapor per Liter at $15.56^{\circ} \mathrm{C}$	0.271	n/a
Cubic Meter of Vapor per Kilogram at $15.56^{\circ} \mathrm{C}$	0.539	1.470
Specific Gravity of Vapor $(\text { Air }=1.0) \text { at } 15.56^{\circ} \mathrm{C}$	1.50	0.56
Ignition Temperature in Air, ${ }^{\circ} \mathrm{C}$	493-604	705
Maximum Flame Temperature in Air, ${ }^{\circ} \mathrm{C}$	1,980	1,557
Cubic Meters of Air Required to Burn One Cubic Meter of Gas	23.86	9.57
Limits of Flammability in Air, \% of Vapor in Air-Gas Mix: (a) Lower (b) Upper	$\begin{gathered} 2.15 \\ 9.6 \end{gathered}$	$\begin{gathered} 5.0 \\ 15.0 \end{gathered}$
Latent Heat of Vaporization at Boiling Point: (a) Kilojoule per Kilogram (b) Kilojoule per Liter	$\begin{aligned} & 428 \\ & 216 \end{aligned}$	$\begin{aligned} & 509 \\ & \mathrm{n} / \mathrm{a} \end{aligned}$
Total Heating Values After Vaporization: (a) Kilojoule per Cubic Meter (b) Kilojoule per Kilogram (c) Kilojoule per Liter	$\begin{aligned} & 92,430 \\ & 49,920 \\ & 25,140 \end{aligned}$	$\begin{gathered} 37,706 \\ 55,533 \\ \text { n/a } \end{gathered}$

Table 1C. Energy Content and Environmental Impact of Various Energy Sources					
	Propane (per ft ${ }^{3}$)	Methane	Propane (per gallon)	Fuel Oil	Electricity
Energy Value	$2,524$ Btu/ft ${ }^{3}$	$1,012$ Btu/ft ${ }^{3}$	91,500 Btu/gal	$\begin{aligned} & 139,400 \\ & \text { Btu/gal } \end{aligned}$	$3,413$ Btu/ kWh
CO_{2} emissions (lbs/ MMBtu)	139.2	115.3	139.2	161.4	389.5
Source Energy Multipliers*	1.151	1.092	1.151	1.158	3.365

*Source Energy Multiplier is the total units of energy that go into generation, processing, and delivery for a particular energy source to produce one unit of energy at the site.

Vapor Pressure of Gas

Vapor pressure can be defined as the force exerted by a gas or liquid attempting to escape from a container. This pressure moves gas along the pipe or tubing to the appliance burner.

Outside temperature greatly affects container pressure. Lower temperature means lower container pressure. Too low a container pressure means that not enough gas is able to get to the appliance.

The table below shows vapor pressures for propane and butane at various outside temperatures.

Table 2. Vapor Pressures								
TEMPERATURE		Approximate Vapor Pressure, PSIG (bar) Propane \qquad to \qquad Butane						
${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$	100\%	80/20	60/40	50/50	40/60	20/80	100\%
-40	-40	$\begin{gathered} 3.6 \\ (0,25) \end{gathered}$	-	-	-	-	-	-
-30	-34,4	$\begin{gathered} 8 \\ (0,55) \\ \hline \end{gathered}$	$\begin{gathered} 4.5 \\ (0,31) \end{gathered}$	-	-	-	-	-
-20	-28,9	$\begin{gathered} 13.5 \\ (0,93) \end{gathered}$	$\begin{gathered} 9.2 \\ (0,63) \end{gathered}$	$\begin{gathered} 4.9 \\ (0,34) \end{gathered}$	$\begin{gathered} 1.9 \\ (0,13) \end{gathered}$	-	-	-
-10	-23,3	$\begin{gathered} 20 \\ (1,4) \end{gathered}$	$\begin{gathered} 16 \\ (1,1) \end{gathered}$	$\begin{gathered} 9 \\ (0,62) \end{gathered}$	$\begin{gathered} 6 \\ (0,41) \\ \hline \end{gathered}$	$\begin{gathered} 3.5 \\ (0,24) \\ \hline \end{gathered}$	-	-
0	-17,8	$\begin{gathered} 28 \\ (1,9) \end{gathered}$	$\begin{gathered} 22 \\ (1,5) \end{gathered}$	$\begin{gathered} 15 \\ (1,0) \end{gathered}$	$\begin{gathered} 11 \\ (0,76) \\ \hline \end{gathered}$	$\begin{gathered} 7.3 \\ (0,50) \\ \hline \end{gathered}$	-	-
10	-12,2	$\begin{gathered} 37 \\ (2,6) \\ \hline \end{gathered}$	$\begin{gathered} 29 \\ (2,0) \end{gathered}$	$\begin{gathered} 20 \\ (1,4) \end{gathered}$	$\begin{gathered} 17 \\ (1,2) \end{gathered}$	$\begin{gathered} 13 \\ (0,90) \\ \hline \end{gathered}$	$\begin{gathered} 3.4 \\ (0,23) \\ \hline \end{gathered}$	-
20	-6,7	$\begin{gathered} 47 \\ (3,2) \\ \hline \end{gathered}$	$\begin{gathered} 36 \\ (2,5) \end{gathered}$	$\begin{gathered} 28 \\ (1,9) \end{gathered}$	$\begin{gathered} 23 \\ (1,6) \end{gathered}$	$\begin{gathered} 18 \\ (1,2) \end{gathered}$	$\begin{gathered} 7.4 \\ (0,51) \\ \hline \end{gathered}$	-
30	-1,1	$\begin{gathered} 58 \\ (4,0) \\ \hline \end{gathered}$	$\begin{array}{r} 45 \\ (3,1) \\ \hline \end{array}$	$\begin{gathered} 35 \\ (2,4) \end{gathered}$	$\begin{gathered} 29 \\ (2,0) \\ \hline \end{gathered}$	$\begin{gathered} 24 \\ (1,7) \\ \hline \end{gathered}$	$\begin{gathered} 13 \\ (0,9) \\ \hline \end{gathered}$	-
40	4,4	$\begin{gathered} 72 \\ (5,0) \\ \hline \end{gathered}$	$\begin{gathered} 58 \\ (4,0) \\ \hline \end{gathered}$	$\begin{gathered} 44 \\ (3,0) \end{gathered}$	$\begin{gathered} 37 \\ (2,6) \\ \hline \end{gathered}$	$\begin{gathered} 32 \\ (2,2) \\ \hline \end{gathered}$	$\begin{gathered} 18 \\ (1,2) \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ (0,21) \\ \hline \end{gathered}$
50	10	$\begin{gathered} 86 \\ (5,9) \end{gathered}$	$\begin{gathered} 69 \\ (4,8) \end{gathered}$	$\begin{gathered} 53 \\ (3,7) \end{gathered}$	$\begin{gathered} 46 \\ (3,2) \\ \hline \end{gathered}$	$\begin{gathered} 40 \\ (2,8) \end{gathered}$	$\begin{gathered} 24 \\ (1,7) \end{gathered}$	$\begin{gathered} 6.9 \\ (0,58) \end{gathered}$
60	15,6	$\begin{array}{r} 102 \\ (7,0) \\ \hline \end{array}$	$\begin{gathered} 80 \\ (5,5) \end{gathered}$	$\begin{gathered} 65 \\ (4,5) \\ \hline \end{gathered}$	$\begin{gathered} 56 \\ (3,9) \end{gathered}$	$\begin{gathered} 49 \\ (3,4) \\ \hline \end{gathered}$	$\begin{gathered} 30 \\ (2,1) \\ \hline \end{gathered}$	$\begin{gathered} 12 \\ (0,83) \\ \hline \end{gathered}$
70	21,1	$\begin{array}{r} 127 \\ (8,8) \\ \hline \end{array}$	$\begin{gathered} 95 \\ (6,6) \\ \hline \end{gathered}$	$\begin{array}{r} 78 \\ (5,4) \\ \hline \end{array}$	$\begin{array}{r} 68 \\ (4,7) \\ \hline \end{array}$	$\begin{array}{r} 59 \\ (4,1) \\ \hline \end{array}$	$\begin{gathered} 38 \\ (2,6) \\ \hline \end{gathered}$	$\begin{array}{r} 17 \\ (1,2) \\ \hline \end{array}$
80	26,7	$\begin{array}{r} 140 \\ (9,7) \\ \hline \end{array}$	$\begin{array}{r} 125 \\ (8,6) \\ \hline \end{array}$	$\begin{gathered} 90 \\ (6,2) \end{gathered}$	$\begin{gathered} 80 \\ (5,5) \end{gathered}$	$\begin{gathered} 70 \\ (4,8) \end{gathered}$	$\begin{gathered} 46 \\ (3,2) \\ \hline \end{gathered}$	$\begin{gathered} 23 \\ (1,6) \\ \hline \end{gathered}$
90	32,2	$\begin{array}{r} 165 \\ (11,4) \\ \hline \end{array}$	$\begin{array}{r} 140 \\ (9,7) \\ \hline \end{array}$	$\begin{array}{r} 112 \\ (7,7) \\ \hline \end{array}$	$\begin{gathered} 95 \\ (6,6) \\ \hline \end{gathered}$	$\begin{gathered} 82 \\ (5,7) \\ \hline \end{gathered}$	$\begin{array}{r} 56 \\ (3,9) \\ \hline \end{array}$	$\begin{gathered} 29 \\ (2,0) \\ \hline \end{gathered}$
100	37,8	$\begin{gathered} 196 \\ (13,5) \\ \hline \end{gathered}$	$\begin{gathered} 168 \\ (11,6) \\ \hline \end{gathered}$	$\begin{array}{r} 137 \\ (9,4) \\ \hline \end{array}$	$\begin{array}{r} 123 \\ (8,5) \\ \hline \end{array}$	$\begin{array}{r} 100 \\ (6,9) \\ \hline \end{array}$	$\begin{gathered} 69 \\ (4,8) \\ \hline \end{gathered}$	$\begin{gathered} 36 \\ (2,5) \\ \hline \end{gathered}$
110	43,3	$\begin{gathered} 220 \\ (15,2) \\ \hline \end{gathered}$	$\begin{gathered} 185 \\ (12,8) \\ \hline \end{gathered}$	$\begin{gathered} 165 \\ (11,4) \\ \hline \end{gathered}$	$\begin{gathered} 148 \\ (10,2) \\ \hline \end{gathered}$	$\begin{array}{r} 130 \\ (9,0) \\ \hline \end{array}$	$\begin{gathered} 80 \\ (5,5) \\ \hline \end{gathered}$	$\begin{gathered} 45 \\ (3,1) \\ \hline \end{gathered}$

Table adapted from LP-Gas Serviceman's Handbook 2012

Determining Total Load

The best way to determine Btu input is from the appliance nameplate or from the manufacturer's catalog. Add the input of all the appliances for the total load. If specific appliance capacity information is not available, Table 3A below will be useful. Remember to allow for appliances that may be installed at a later date.

If the propane load in standard cubic feet per hour (SCFH) is desired, divide the Btu/hr load by 2,488 to get SCFH.
Conversely, the Btu/hr capacity can be obtained from SCFH by multiplying the SCFH figure by 2,488 .

Figuring the total load accurately is most important because of the size of the pipe and tubing, the tank, and the regulator will be based on the capacity of the system to be served.

Table 3A. Gas Required for Common Appliances	
APPLIANCE	Approximate Input Btu/hr
Warm Air Furnace	
Single Family	$60,000-120,000$
Multifamily, per Unit	$40,000-60,000$
Hydronic Boiler, Space Heating	
Single Family	$80,000-140,000$
Multifamily, per Unit	$50,000-80,000$
Hydronic Boiler, Space and Water Heating	
Single Family	$100,000-200,000$
Multifamily, per Unit	$50,000-100,000$
Range, Freestanding, Domestic	$50,000-90,000$
Built-In Oven or Broiler Unit, Domestic	$14,000-16,000$
Built-In Top Unit, Domestic	$40,000-85,000$
Water Heater, Storage, 30 to 40 gal. Tank	$25,000-50,000$
Water Heater, Storage, 50 gal. Tank	$30,000-55,000$
Water Heater, Tankless	$30,000-55,000$
2.5 GPM	$115,000-125,000$
3 GPM	$125,000-150,000$
4 GPM	$155,000-200,000$
Water Heater, Domestic, Circulating or Side-Arm	$1,500-2,000$
Refrigerator	$18,000-22,000$
Clothes Dryer, Type 1 (Domestic)	$20,000-90,000$
Gas Fireplace Direct Vent	$35,000-90,000$
Gas Log	$40,000-80,000$
Barbecue	$1,400-2,800$
Gas Light	

Table adapted from Newport Partners, 2011.

Determining Total Load (Continued)

A variety of mechanical systems are available for space heating and water heating in homes. These systems have varying energy sources and varying efficiency levels. Table 3B below provides simple calculations that allow contractors and homeowners to estimate the dollars per million Btus depending on the equipment type, efficiency, and energy price. The " $\$ / \mathrm{MMBtu}$ " figure can be compared across different options to evaluate them.

Table 3B. Operating Costs and Equipment Efficiencies of Residential Space and Water Heating Systems			
SPACE HEATING	Pricing Estimation Formula (\$/MMBtu)	Typical Equipment Efficiency Ranges for Newer Systems	
Propane (furnace or boiler)	$\frac{(10.9 \times \$ / \mathrm{gal})}{(\mathrm{AFUE} / 100)}$	AFUE: 78-98	
Natural Gas (furnace or boiler)	$\frac{(10 \times \$ / \text { therm })}{(\mathrm{AFUE} / 100)}$	AFUE: 78-98	
Fuel Oil (furnace or boiler)	$\frac{(7.2 \times \$ / \mathrm{gal})}{(\mathrm{AFUE} / 100)}$	AFUE: 78-95	
Electric Resistance	$293 \times \$ / \mathrm{kWh}$	COP: 1.0	
Electric Air Source Heat Pump	$\frac{(1000 \times \$ / k W h)}{\text { HSPF }}$	HSPF: 7.7-13.0	
Electric Ground Source Heat Pump	$\frac{(293 \times \$ / \mathrm{kWh})}{\text { COP }}$	COP: 3.0-4.7	
WATER HEATING	Pricing Estimation Formula (\$/MMBtu)	Typical Storage Water Heater Energy Factors (EF)	Typical Instantaneous Water Heater Energy Factor (EF)
Propane	(10.9 \times \$/gal)/EF	0.59-0.67*	0.82-0.98
Methane	(10 x \$/therm)/EF	0.59-0.70*	0.82-0.98
Fuel Oil	(7.2 x \$/gal)/EF	0.51-0.68	-
Electric Resistance	$(293 \times \$ / \mathrm{kWh}) / \mathrm{EF}$	0.90-0.95	0.93-1.0
Electric Air Source Heat Pump	(293 \times \$/kWh)/EF	2.0-2.51	-

*Residential and commercial units are available with thermal efficiencies up to 96%.

Vaporization Rates

The factors affecting vaporization include wetted surface area of the container, liquid level in the container, temperature and humidity surrounding the container, and whether the container is aboveground or underground.

The temperature of the liquid is proportional to the outside air temperature, and the wetted surface area is the tank surface area in contact with the liquid. Therefore, when the outside air temperature is lower or the container has less liquid in it, the vaporization rate of the container is a lower value.

To determine the proper size of ASME storage tanks, it is important to consider the lowest winter temperature at the location.

See page 10 for more information.

Vaporization Rates for ASME

Storage Tanks

A number of assumptions were made in calculating the Btu figures listed in Table 4, below:
1 The tank is one-half full.
2 Relative humidity is 70 percent.
3 The tank is under intermittent loading.
Although none of these conditions may apply, Table 4 can still serve as a good rule of thumb in estimating what a particular tank size will provide under various temperatures. This method uses ASME tank dimensions, liquid level, and a constant value for each 10 percent of liquid to estimate the vaporization capacity of a given tank size at $0^{\circ} \mathrm{F}$. Continuous loading is not a very common occurrence on domestic installations, but under continuous loading the withdrawal rates in Table 4 should be multiplied by 0.25 .

Table 4. Maximum Intermittent Withdrawal Rate (Btu/hr) Without Tank Frosting* If Lowest Outdoor Temperature (Average for 24 Hours) Reaches ...					
TEMPERATURE	Tank Size, Gallons (I)				
	$150(568)$	$250(946)$	$500(1893)$	$1000(3785)$	
$40^{\circ} \mathrm{F}$	$4^{\circ} \mathrm{C}$	214,900	288,100	478,800	852,800
$30^{\circ} \mathrm{F}$	$-1^{\circ} \mathrm{C}$	187,000	251,800	418,600	745,600
$20^{\circ} \mathrm{F}$	$-7^{\circ} \mathrm{C}$	161,800	216,800	360,400	641,900
$10^{\circ} \mathrm{F}$	$-12^{\circ} \mathrm{C}$	148,000	198,400	329,700	587,200
$0^{\circ} \mathrm{F}$	$-18^{\circ} \mathrm{C}$	134,700	180,600	300,100	534,500
$-10^{\circ} \mathrm{F}$	$-23^{\circ} \mathrm{C}$	132,400	177,400	294,800	525,400
$-20^{\circ} \mathrm{F}$	$-29^{\circ} \mathrm{C}$	108,800	145,800	242,300	431,600
$-30^{\circ} \mathrm{F}$	$-34^{\circ} \mathrm{C}$	107,100	143,500	238,600	425,000

[^0]
Container Location and Installation

Once the proper size of the ASME storage tank has been determined, careful attention must be given to the most convenient yet safe place for its location on the customer's property.

The container should be placed in a location pleasing to the customer but not conflicting with state and local regulations or NFPA 58, Storage and Handling of Liquefied Petroleum Gases. Refer to this standard and consult with your propane professional to determine the appropriate placement of propane containers.
In general, storage tanks should be placed in an accessible location for filling. Aboveground tanks should be supported by concrete blocks of appropriate size and reinforcement. All propane storage tanks should be located away from vehicular traffic.

For ASME containers, the distance from any building openings, external sources of ignition, and intakes to direct-vented gas appliances or mechanical ventilation systems are a critical consideration. See Figures 5 and 6 on pages 12 and 13, respectively.
Refer to NFPA 58 for the minimum distances that these containers must be placed from a building or other objects.

Figure 5. Aboveground ASME containers. Reproduced with permission from NFPA 58-2011, Liquefied Petroleum Gas Code, Copyright © 2010, National Fire Protection Association. This reprinted material is not the complete and official position of the NFPA on the referenced subject, which is represented only by the standard in its entirety.

Figure 6. Underground ASME containers. Reproduced with permission from NFPA 58-2011, Liquefied Petroleum Gas Code, Copyright © 2010, National Fire Protection Association. This reprinted material is not the complete and official position of the NFPA on the referenced subject, which is represented only by the standard in its entirety.

Nominal Pipe Size, Schedule 40									
Piping Length, Feet	$\begin{aligned} & 1 / 2 \mathrm{in} . \\ & (0.622) \end{aligned}$	3/4 in. (0.824)	$\begin{gathered} 1 \mathrm{in} . \\ (1.049) \end{gathered}$	$\begin{gathered} 1-1 / 4 \mathrm{in} . \\ (1.38) \end{gathered}$	$\begin{gathered} 1-1 / 2 \mathrm{in} . \\ (1.61) \end{gathered}$	$\begin{aligned} & 2 \mathrm{in} . \\ & (2.067) \end{aligned}$	$\begin{gathered} 3 \mathrm{in} . \\ (3.068) \end{gathered}$	$\begin{gathered} 3-1 / 2 \mathrm{in} . \\ (3.548) \end{gathered}$	$\begin{gathered} 4 \mathrm{in} . \\ (4.026) \end{gathered}$
10	291	608	1146	2353	3525	6789	19130	28008	39018
20	200	418	788	1617	2423	4666	13148	19250	26817
30	161	336	632	1299	1946	3747	10558	15458	21535
40	137	287	541	1111	1665	3207	9036	13230	18431
50	122	255	480	985	1476	2842	8009	11726	16335
60	110	231	435	892	1337	2575	7256	10625	14801
80	94	198	372	764	1144	2204	6211	9093	12668
100	84	175	330	677	1014	1954	5504	8059	11227
125	74	155	292	600	899	1731	4878	7143	9950
150	67	141	265	544	815	1569	4420	6472	9016
200	58	120	227	465	697	1343	3783	5539	7716
250	51	107	201	412	618	1190	3353	4909	6839
300	46	97	182	374	560	1078	3038	4448	6196
350	43	89	167	344	515	992	2795	4092	5701
400	40	83	156	320	479	923	2600	3807	5303

Adapted with permission from NFPA 58-2011, Liquefied Petroleum Gas Code, Copyright © 2010, National Fire Protection Association. This reprinted material is not the complete and official position of the NFPA on the referenced subject, which is represented only by the standard in its entirety.

Table 8. Maximum Capacity of CSST*																	
EHD** FLOWDESIGNATION	IN THOUSANDS OF BTU/HR OF UNDILUTED PROPANE AT A PRESSURE OF 11-INCHES W.C. AND A PRESSURE DROP OF 0 (BASED ON A 1.52 SPECIFIC GRAVITY GAS)																
	Tubing Length, Feet																
	5	10	15	20	25	30	40	50	60	70	80	90	100	150	200	250	300
13	72	50	39	34	30	28	23	20	19	17	15	15	14	11	9	8	8
15	99	69	55	49	42	39	33	30	26	25	23	22	20	15	14	12	11
18	181	129	104	91	82	74	64	58	53	49	45	44	41	31	28	25	23
19	211	150	121	106	94	87	74	66	60	57	52	50	47	36	33	30	26
23	355	254	208	183	164	151	131	118	107	99	94	90	85	66	60	53	50
25	426	303	248	216	192	177	153	137	126	117	109	102	98	75	69	61	57
30	744	521	422	365	325	297	256	227	207	191	178	169	159	123	112	99	90
31	863	605	490	425	379	344	297	265	241	222	208	197	186	143	129	117	107

[^1]
Gas Piping Inlet Positioning

Just like tanks, propane pressure regulators come with pipe-size and installation-distance requirements. Regulators installed on the gas piping system at the side of buildings cannot be placed closer than 3 feet horizontally from any building opening, such as a window well, that's lower than the installed regulator. Nor can they be placed closer than 5 feet from any source of ignition, such as an AC compressor. Additional regulations, as well as regulator manufacturer's instructions, may apply. Check with a propane professional first to ensure you comply with interior gas piping inlet positioning requirements.

Conversion Factors

Multiply

LENGTH AND AREA

Millimeters	0.0394	Inches
Meters	3.2808	Feet
Sq. Centimeters	0.1550	Sq. Inches
Sq. Meters	10.764	Sq. Feet

VOLUME AND MASS

Cubic Meters	35.315	Cubic Feet
Liters	0.0353	Cubic Feet
Gallons	0.1337	Cubic Feet
Cubic cm.	0.061	Cubic Inches
Liters	2.114	Pints (US)
Liters	0.2642	Gallons (US)
Kilograms	2.2046	Pounds
Tonnes	1.1024	Tons (US)

PRESSURE AND FLOW RATE

Millibars	0.4018
Ounces/sq. in.	1.733
Inches w.c.	0.0361
Bars	14.50
Kilopascals	0.1450
Kilograms/sq. cm.	14.222
Pounds/sq. in.	0.068
Liters/hr.	0.0353
Cubic Meters/hr.	4.403

MISCELLANEOUS

Kilojoules	0.9478	Btu
Calories, kg	3.968	Btu
Watts	3.414	Btu/hr
Btu	0.00001	Therms
Megajoules	0.00948	Therms

Conversion Factors

Multiply

LENGTH AND AREA
Inches
Feet
Sq. Inches
Sq. Feet
vOLUME AND MASS

Cubic Feet	0.0283	Cubic Meters
Cubic Feet	28.316	Liters
Cubic Feet	7.481	Gallons
Cubic Inches	16.387	Cubic cm.
Pints (US)	0.473	Liters
Gallons (US)	3.785	Liters
Pounds	0.4535	Kilograms
Tons (US)	0.9071	Tonnes

PRESSURE AND FLOW RATE

Inches w.c.	2.488
Inches w.c.	0.577
Pounds/sq. in.	27.71
Pounds/sq. in.	0.0689
Pounds/sq. in.	6.895
Pounds/sq. in.	0.0703
Atmospheres	14.696
Cubic Feet/hr.	28.316
Gallons/min.	0.2271

MISCELLANEOUS

Btu	1.055	Kilojoules
Btu	0.252	Calories, kg
Btu/hr	0.293	Watts
Therms	100,000	Btu
Therms	105.5	Megajoules

Temperature Conversion

Table 9. Temperature Conversion

${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$
-40	-40	30	-1.1	90	32.2
-30	-34.4	32	0	100	37.8
-20	-28.9	40	4.4	110	43.3
-10	-23.3	50	10.0	120	48.9
0	-17.8	60	15.6	130	54.4
10	-12.2	70	21.1	140	60.0
20	-6.7	80	26.7	150	65.6

All trademarks shown are the property of their respective owners.

Notes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

buildwithpropane.com

propanesafety.com
202.452.8975
info@propane.com

PO Box 760
Clifton Park, NY 12065
www.nypropane.com

Scan this code to connect to training.
Need a code reader?
Download one at ScanLife.com.

Propane Education \& Research Council
1140 Connecticut Ave. N.W., Suite 1075
Washington, DC 20036
© Propane Education \& Research Council 01/12
The Propane Education \& Research Council was authorized by the U.S. Congress with the passage of Public Law 104-284, the Propane Education and Research Act (PERA), signed into law on October 11, 1996. The mission of the Propane Education \& Research Council is to promote the safe, efficient use of odorized propane gas as a preferred energy source.

[^0]: *Tank frosting acts as an insulator, reducing the vaporization rate.

[^1]: *Table includes losses for four 90° bends and two end fittings. Tubing runs with larger numbers of bend and/or fittings shall be increased by an equivalent
 *EHD (Equivalent Hydraulic Diameter) A measure of the relative hydraulic efficiency between different tubing sizes. The greater the value of EHD, the greater
 the gas capacity of the tubing.
 Adapted with permission from NFPA 58-2011, Liquefied Petroleum Gas Code, Copyright © 2010, National Fire Protection Association. This reprinted
 material is not the complete and official position of the NFPA on the referenced subject, which is represented only by the standard in its entirety.

